Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings

نویسنده

  • TRUDE STORELVMO
چکیده

The paper discusses some challenges in aerosol-climate modelling. CAM-Oslo, extended from NCAR-CAM3, employs an aerosol module for sea-salt, dust, sulphate, black carbon (BC) and particulate organic matter (OM). Primary aerosol size-distributions are modified by condensation, coagulation and wet-phase processes. Aerosol optics and cloud droplet numbers use look-up tables constructed from first principles. Ground level sulphate and sea-salt are generally well modelled, BC and OM are slightly underestimated (uncertain), and dust is considerably (factor ∼2) underestimated. Since non-desert dust, nitrate, anthropogenic secondary organics, and biological particles are omitted, aerosol optical depths (0.12) are underestimated by 10–25%. The underestimates are large in areas with biomass burning and soil dust. The direct and indirect forcing of aerosol increments since pre-industrial time are estimated at +0.031 Wm−2 and −1.78 Wm−2, respectively. Although the total absorption AOD probably is slightly underestimated, the BC contributes to DRF with double strength compared to the AeroCom average. Main reasons for this include: internal BC-mixing (+0.2 Wm−2), accumulation mode BC-agglomerates (+0.05 Wm−2), assumed aitken-mode OM-BC mixture (+0.1 Wm−2), large BC fraction (36%) above 500 hPa, and high low-level cloudiness. Using a prognostic CDNC and process parametrized CCN activation instead of assuming CDNC are equal to CCN, the indirect forcing is 36% smaller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol-cloud-climate interactions in the climate model CAM-Oslo

A new aerosol module is integrated on-line in the atmospheric GCM CAM-Oslo coupled to a slab ocean for equilibrium climate response studies. The response to an anthropogenic change in aerosols since pre-industrial times is compared with that of a future 63% increased CO2 level. The aerosol module calculates concentrations of sea-salt, mineral dust, sulphate, black carbon (BC) and particulate or...

متن کامل

Combined observational and modeling based study of the aerosol indirect effect

The indirect effect of aerosols via liquid clouds is investigated by comparing aerosol and cloud characteristics from the Global Climate Model CAM-Oslo to those observed by the MODIS instrument onboard the TERRA and AQUA satellites (http://modis.gsfc.nasa.gov). The comparison is carried out for 15 selected regions ranging from remote and clean to densely populated and polluted. For each region,...

متن کامل

Implementation of the Chemistry Module MECCA (v2.5) in the Modal Aerosol Version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model

A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry’s Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those i...

متن کامل

Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study

Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM) indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These cha...

متن کامل

Aerosol-cloud Interactions in MODIS and CAM-Oslo

Combined observational and modeling based study of the aerosol indirect effect T. Storelvmo, J. E. Kristjansson, G. Myhre, M. Johnsrud, and F. Stordal Department of Geosciences, University of Oslo, Oslo, Norway Norwegian Institute for Air Research, Kjeller, Norway Received: 16 January 2006 – Accepted: 21 February 2006 – Published: 11 May 2006 Correspondence to: T. Storelvmo (trude.storelvmo@geo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008